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Ionization and equation of state of dense xenon at high pressures and high temperatures
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The ionization degree and equation of state of dense xenon plasma were calculated by using self-consistent
fluid variational theory for temperature of 4—30 kK and density of 0.01-8.5 g/cm?. The dense fluid xenon will
be ionized at high pressures and temperatures. The ionization energy of xenon will be lowered due to the
interactions among all particles of Xe, Xe*, Xe?*, and e. The ionization degree is obtained from nonideal
ionization equilibrium, taking into account the correlative contributions to the chemical potential which is
determined self-consistently by the free energy function. The composition of xenon has been calculated with
given densities and temperatures in the region of partial ionization. The calculated results show a pressure
softening regime at the onset of ionization. Comparison is performed with available shock-wave experiments

and other theoretical calculations.
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I. INTRODUCTION

Noble gases are widely studied in plasma physics because
of the simple electric structure such as a closed shell system.
Especially, the behavior and equation of state (EOS) of
plasma, under the condition of strong heating and compres-
sion is of considerable interest from the general physics point
of view, it is also of practical interest for astrophysics, the
physics of giant planets, and promising applications in power
engineering [1]. Various experiments were performed mea-
suring the equation of state and electrical conduction of gas
and liquid xenon [2-9]. Different models have also been ap-
plied to study the behavior of xenon at ultrahigh pressure.
For instance, the augmented-plane-wave (APW) electron
band theory method was used to compute the 0-K pressure-
volume isotherm [10]. The fluid perturbation theory, employ-
ing an interatomic pair potential, was used to calculate the
shock-compression curve for comparison with the shock data
[10], and the chemical picture was used to determine the
ionization composition [11]. Particular attention is being
given to the ionization composition of plasma, since this pro-
vides a basis for calculating its thermodynamic, transport,
and optical properties. Although the chemical picture [11] for
fluid xenon at high density took into account the various
interactions among atomic and ionic species and electrons,
the corrections of lowering of ionization energy caused by
the interactions of various particles were not considered in
that model. In this paper, a model with chemical reaction
based on the chemical equilibrium of ionization is presented,
which includes the correction of ionization energy that is
determined self-consistently by the free energy function. The
theoretical model is described in short, verified by comparing
with the available experiments and other calculations, and
applied to predict the thermodynamic properties of xenon
plasma over a wide range of pressures and temperatures.
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II. THEORETICAL MODEL

The model has been described in detail elsewhere [12] but
is being expressed here in terms of self-consistent fluid varia-
tional theory in order to relate it to our work on dense xenon.
The model formulated for xenon at high pressures and tem-
peratures considers that the process of ionization is described
shortly in the following. At sufficiently high temperatures
and high pressures, supposing that it will produce the first
and second ionization processes of xenon, Xe=Xe*+e and
Xe*=Xe>*+e¢, we have the corresponding equilibrium con-
ditions wye=pMxe++ M, and pyer=Uxe2++ .. We neglect
above the second ionization stage, consider a plasma consist-
ing of N, free electrons, N, the neutral Xe atoms, N, the Xe*
ions, and N, the Xe2* jons in a volume V. The total Helm-
holtz free energy can be written as

F(Ny,N{,N,,N,,V,T) = Fi¢ 4 feont 4 peoul ol = (1)

where Fid, peonf  peoul and FPO! denote contributions to free
energy, the ideal, configurational, Coulomb interactions (in-
cluding electron-electron, ion-ion, and ion-electron), polar-
ization interactions between charged and neutral particles,
respectively.

The ideal atomic, ionic, and electronic parts of F'4 are
given by the Maxwell-Boltzmann statistics for the heavy par-
ticles and by the Fermi integrals for the electrons,

2
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where kg is the Boltzmann constant, 7 is the temperature, n;
is the particle number density, m; is the mass, and A;
=(27h?/mkgT)"? is the thermal de Broglie wavelength of
species i. The internal partition functions
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obey the Brillouin-Plank-Larkin convention, and refer to a
common energy scale for all ionization excitation states. g,
is the bound energy. g;, and W,, are the multiplicity and the
energy of excited state «, respectively. Values of these pa-
rameters in our model are taken from Moore [13]. In Eq. (2),
the electrons are considered as a partially degenerated ideal
Fermi gas, I,(£) is the Fermi-Dirac integral

I(§)—fw xX"dx
mer 0 e+ 1’

In Eq. (4), u is the ideal part of the chemical potential of the
electrons, and ¢ can be solved by the following equation:

E=uYkyT. (4)
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We treat interactions among neutral species using the fluid
perturbation theory of Weeks, Chandler, and Andersen
(WCA) [14] and short-range repulsion among ions and at-
oms using the model of a mixture of hard spheres. In our
numerical calculations, atomic and ionic radii for Xe, Xe*,
and Xe?* are taken for the variational parameters determined
from the minimization of free energy within self-consistent
fluid variational theory (SFVT). The Mansoori formula [15]
was adopted to calculate the free energy of multicomponent
hard-sphere mixtures of the reference system. A simpler pro-
cedure for the ionic sphere radii r; of species i is based on the
assumption that the atom’s structure is hydrogenlike [16]. An
expansion of the free energy is performed around the contri-
bution arising from the “reference” part, which is almost
always approximated by the free energy of a hard-sphere
fluid. Feo"f arises from the free energy of the reference sys-
tem, the perturbation system can be expressed as

Fconf= Fhs + Fpert_ (6)
The free energy caused by the interactions of atoms can be
written as [17]

2

27N; [~
FPet = ﬂ‘-/ Of gns (7, 70)D(r)Fdr, (7)
dp

where nozg%dg, &ns(r, 1) is the hard-sphere radial distri-
bution function. ®(r) is the intermolecular potential between
xenon atoms, it was taken as the exp-6 form which has been
successfully applied to describe the equation of state of many
materials over a wide range of densities and temperatures
[11].
The Coulomb contributions can be split into four parts as
follows:
FUl= FX 4+ FS, + F,+ F, (8)

e’

where superscripts x and c¢ stand for the exchange and cor-
relative contributions, while subscript i stands for ions and e
for electrons. The Coulomb interactions are taken as the Padé
approximations [18].
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The polarization of atoms introduces an additional term in
free energy [19]

kT

= =Ny 2, (NiBo,), ©)

where B, ; is the second Virial coefficient of the polarization
potential between atoms and charged species i. It can be
expressed as

By, =2m f P(1—ePha)dr  (i=Xe*,Xe>e),
OXe-i

(10)

where

; Zeta; [ 1+rk\* _
¢Pol(r)=_ B (r2+0'»2) e (11)

is the polarization potential between xenon and the species i.
o; and «; are the hard-core radii of the polarization potential
and the polarizability of species i, respectively, and « is the
inverse screen length of the plasma given by [20]

B 3me’ N,

W= O (ke T), (12)
B
where @ = ;BL;F = (%T - 3\3)2/ 3, and Ty is the Fermi temperature.

The chemical potentials satisfy the following equations
when the system reaches ionization equilibrium:

Mict = pi+ pe (i=1,2). (13)

Usually, the chemical potentials can be split into ideal parts
,LL;d and correlation parts w;, the above equation can be re-
written as

ity iy = (g ) + (' + ), (14)
where
) A IF°¢
id id c
&= R =kxTé, S= s 15
W=y e =k & M o, (15)
Fc:Fconf+ Fcoul +Fpol. (16)

Taking Egs. (15) and (16) into Eq. (14), the ionization equi-
librium equations can be obtained,

Ni=KiNi—l (i=1,2), (17)
. . U; 1

where the ionization coefficient K;=7" exp(—¢ 7-§), I'=1I;

—Al, I; is the ionization energy, Al; is the correction value,

AlLi=p; | —u;—pu;, and I} is defined as the effective ioniza-

tion energy.

There are five unknown parameters in ionization equilib-
rium Egs. (17) and (5), thus two additional equations are
needed. Here, two conservation relations of mass and charge
can be used

N0+N1+N2:NA, (18)
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FIG. 1. (Color online) Comparison of liquid xenon
Hugoniot.

N€=N1+2N2, (19)

where N, is the total number of xenon particles. Then, the
particle number and correction ionization can be solved from
Egs. (5) and (17)—(19) by the self-consistent iterative tech-
nique.

Once the total free energy has been calculated, the ther-
modynamic parameters such as pressure, internal energy, and
entropy can be obtained from the standard thermodynamic
relations. Shock-wave experiments provide us with direct in-
formation about a material EOS at high pressure and tem-
perature. When a shock wave passes through the sample, the
thermodynamic state of a material, characterized by the in-
ternal energy, pressure, and volume, changes from initial
(Ey, Py, V) to final values of (Ey, Py, V). The conservation
of mass, momentum, and energy yields the Hugoniot condi-
tion

1
Ey=Ey+ E(PH"' Po)(Vo—Vy). (20)

Experimental points are deduced from shock velocity mea-
surements so that theoretical models for behavior of materi-
als at high temperatures and pressures can be checked.

III. RESULTS AND DISCUSSION

The equations of state and Hugoniot curve for dense xe-
non have been calculated using the SFVT as described
above. In order to estimate the influence of the lowering of
ionization energy caused by the nonideal interactions, we
compared the Hugoniot curves derived from the EOS with
and without the ionization energy correction. Figure 1 shows
our calculation Hugoniot curves of liquid xenon along with
experimental data and Ross’ calculated results. It is clearly
seen that the present calculations with and without the cor-
relative corrections start to deviate at pressure above 20 GPa.
The calculations with the correlative corrections show an in-
crease in compressibility related to the calculations without
the corrections at the onset of ionization (i.e., P>20 GPa).
The Hugoniot curve without considering the ionization en-
ergy correction is higher than that with correction. This in-
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FIG. 2. (Color online) Comparison of the curves for pressure
and temperature of liquid xenon along the principal Hugoniot.

dicates that the correlative contributions come into play at
this pressure above and lead to a measurable softening of
Hugoniot. The present results with the correlative corrections
are in agreement with the Nellis er al. experiments of pres-
sure up to 130 GPa. It is shown that the present model with
the correlative corrections can reproduce the experimental
shock Hugoniot equation of state. The calculated Hugoniot
curve used in the Slater exchange band gap [10] is in agree-
ment with the present calculations without the correlative
corrections in the pressure region from 10 to 50 GPa. This
indicates that the APW-Slater calculation is not better, in-
cluding all nonideal interactions.

Shock temperature measurements can provide a test of the
theoretical model. It is well known that the ionization equi-
librium Xe=Xe*+e¢ and Xet=2Xe2*+e, etc., reflects the
very subtle changes in the electronic and structural properties
at high temperature and pressure via the correlative contri-
butions consistent with the equation of state. In order to test
the present model, the liquid-xenon shock temperatures ver-
sus density have been calculated using the SFVT along the
principal Hugoniot. The calculated results along with the
APW-Slater [10], Radousky et al. [7], and Urlin et al. [8]
experimental results are shown in Fig. 2. We can see that the
present shock temperatures of two calculations with and
without the correlative corrections start to deviate at density
5.4 g/cm? and the deviation increases gradually with the in-
crease of density. This indicates that the effective ionization
energy decreases with the increase of density and tempera-
ture. The calculations with the correlative corrections show a
decrease in shock temperature related to the calculations
without the correlative corrections at the onset of ionization.
The calculated shock temperatures with the corrections are in
good agreement with the available experiments. The calcula-
tion without the corrections is in agreement with the APW-
Slater result. This trend is consistent with the calculation of
the shock pressure density shown in Fig. 1.

Figure 3 shows the curves of the first and second effective
ionization energies ()¢ and I,.) of dense xenon as a func-
tion of temperature and pressure along the principal Hugo-
niot. It can be seen that /. and I,.¢ Will approach the first
and second ionization energy (I;p=12.12 and I,;=21.2 eV)
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FIG. 3. (Color online) The first and second effective ionization
energy of fluid xenon as a function of temperature and pressure
along the principal Hugoniot.

of Xe atom at pressure P — 0 and decrease with the increase
of pressure and temperature. The correlative contribution
yields a lowering of ionization energy so that pressure ion-
ization becomes operative already in the neutral fluid atoms.
Xenon at high temperatures and pressures is considered
the partially ionized plasma. Two ionization stages have been
taken into account in our calculations. A comparison of the
composition for a density of 1 g/cm? is shown in Fig. 4,
with and without the correlative corrections. The fraction of
onefold and twofold charge ions Xe* and Xe?* increase mo-
notonously with increasing temperature in the case of non-
correction at temperature above 12 kK. However, if the cor-
rections are considered, the fraction of onefold charge ions
Xe* increases up to maximum, then decreases, and the frac-
tion of twofold charge ions Xe2* increases, while the fraction
of atoms Xe decreases with the increase of temperature.
These systematic trends of the increasing occupation of high
ionization stages with increasing temperature are obvious. It
is also clearly seen that the effects of the ionization energy
correction always lead to higher degrees of ionization as
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—— Without correction
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FIG. 4. (Color online) The concentration of ionization compo-

sition of xenon plasma as a function of temperature at density p
=1.0 g/cm’.
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FIG. 5. (Color online) The contour of ionization degree of xe-
non plasma as a function of temperature and density.

compared with the noncorrection. It verifies the fact that
nonideality in a system is always responsible for a decrease
of the ionization energy.

Figure 5 shows the contour of ionization degree of fluid
xenon as a function of density and temperature in the ranges
0.01-8.5 g cm™ and 4-30 kK. The present model produces
pressure and temperature ionization varying continuously as
either the density or temperature increases.

Figure 6 shows the predicted contour of the pressure of
xenon plasma as a function of density and temperature in the
ranges 0.01-8.5 g cm™ and 4-30 kK. It can be seen from
Fig. 6 that there is a pressure softening regime in the density
ranges 7.5-8.5 g cm™ and the temperature ranges 9—15 kK.
This indicates an increase in compressibility at the regime of
the onset of ionization. Recently, experimental Hugoniot data
for helium have also shown similar results [21]. However, at
higher temperature (i.e., 7> 15 kK) the pressure monoto-
nously increases with the increase of density. This shows that
the effect of temperature ionization occurring is dominant.

Physical and chemical pictures provide an alternative de-
scription of plasmas. The advantage of the chemical picture
is that it is in many cases more appropriate for the descrip-
tion of real plasma. Many chemical picture models have
been applied to treat the effect of ionization on the EOS. In
these models the atoms, ions, and molecules are treated as
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FIG. 6. (Color online) The contour of the pressure of xenon
plasma as a function of temperature and density.
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separate species. The constituents of the plasma are free elec-
trons, free nuclei, ions, atoms, and molecules. Although the
chemical picture for fluid xenon at high density took into
account the various interactions among atomic and ionic spe-
cies and electrons, the corrections of lowering of the ioniza-
tion energy caused by the interactions of various particles
were not considered in that model [11]. However, the treat-
ment of ionization equilibrium in a chemical model has a
strong influence on the results for the EOS of dense xenon
which is illustrated in Figs. 1, 2, and 4, with and without the
correlative corrections. Of special interest for the theoretical
description are the correlation contributions of charge par-
ticles to the ionization equilibrium as well as between
charged and neutral particles. The current chemical model of
partial ionization plasmas is proposed. Unlike the ordinary
chemical picture it allows one to determine, in a self-
consistent manner, both ionization equilibrium and correla-
tive corrections to ionization energy as well. The pressure
ionization of hydrogen has been calculated by Saumon and
Chabrier [20] using the chemical and ionization equilibrium
between the various species. The screened one-component
plasma model (SCOP) was applied to treat the Coulomb in-
teractions of the electron-ion system in their model. How-
ever, the Coulomb interactions in our model are taken as the
Padé approximations which describe the nonideal effects due
to exchange and correlation interactions of charged particles
and which cover a wide range of densities and temperatures.
The Padé approximation formulas are valid at any electron
degeneracy, for a very broad region of Coulomb coupling,
and are applicable to any chemical mixture [18]. On the
other hand, EOS calculations within the more rigorous physi-
cal picture, quite successful at relatively low density [22],
become prohibitively complicated at high density. First-
principles approaches based on path integral Monte Carlo
(PIMC) [23] or molecular dynamics (MD) calculations are
computationally highly expensive. These methods also suffer
from some difficulties. Indeed, the sign or node problem for
the PIMC method or the use of effective pair potentials for
MD simulations restricts their applicability. In practice, these
simulations do not allow the calculation of thermodynamic
quantities over a large range of temperatures and densities. In
any case, a comparison with our results will be instructive,
but, to the best of our knowledge, no PIMC or MD data for
xenon in the temperature-density range of interest in this
paper has been presented yet.

Although the present calculations are in good agreement
with the shocked Hugoniot measurements for dense xenon
and helium in the regime of partial ionization, it has some
limitations. For example, the multicomponent hard-sphere
mixtures of a reference system were employed; the effective
interatomic potentials used in the calculations cannot fully
reflect the electronic properties and the real many-body ef-
fects. The exp-6 potential parameters of xenon only can be
used to predict accurately pressure to near 100 GPa [11]. But
it is clearly seen from Fig. 1 that the calculated pressures are
in good agreement with experiments in the density ranges of
0.01-9.5 g cm™>. Comparisons with available experimental
results demonstrate that the present model calculations can
reasonably reproduce the major trends in the basic xenon
properties along the principal Hugoniot. However, our pre-

PHYSICAL REVIEW E 79, 016409 (2009)

dicted equations of state of dense xenon have little difference
at density above 9.5 g cm™. We attribute this difference to
the common use of excessively repulsive hard sphere, the
exp-6 potentials between the neutral particles, and the polar-
ization potentials between charged and neutral particles as
well. At density p>10 gcm™, the solution to ionization
equilibrium equations become a formidable task and the
computational time consuming by a self-consistent manner,
due to the instability of the effective ionization energy
caused by the nonideal effects in a system. It leads to the
deviations of the calculation model under such high densi-
ties, which needs further research.

IV. CONCLUSIONS

The present model considered that the processes of the
ionization equilibrium Xe=Xe*+e¢ and Xe*=Xe’*+e by
self-consistent fluid variational theory can be used to calcu-
late the equation of state of fluid xenon over a wide range of
pressure and temperature and reproduce the experimental
shock temperatures and Hugoniot equations of state of liquid
xenon up to 130 GPa. The calculated results show an in-
crease in compressibility at the onset of ionization. The
abundances of the various atomic and ionic components are
obtained from the minimization of the free energy. An im-
portant feature of the present model is the introduction of the
ionization energy correction by fulfilling self-consistently
when minimizing free energy under the condition of chemi-
cal equilibrium for the first and second ionization reactions.
The corrections of ionization energy which are induced by
the interactions among all particles of Xe, Xe®, Xe2*, and e
in the self-consistent variational free energy model are taken
into account. The influence on the equation of state is ana-
lyzed via considering both with and without the ionization
energy correction. The present model represents a significant
effect to describe the interaction properties in a dense mix-
ture of atoms, electrons, and ions. The results for the degree
of ionization can provide a basis for calculating the electrical
conductivity, transport, and optical properties. The present
model can be extended to the calculated EOS of other chemi-
cal elements, such as argon, krypton, and oxygen, etc. Some
approximations, such as the hard-sphere model and Padé ap-
proximations are taken into account in our model, which
may result in a bit uncertainty in the calculation. Highly
ionized xenon will occur at ultrahigh pressures and tempera-
tures, the contributions to the overlapping of the electronic
cloud and the density dependence of atomic partition func-
tion should be taken into account for the theoretical descrip-
tion. This will be our aim in further work.
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